

Power Efficient Radar Signal Processor

Yassir Salama, ITT AES,

Dennis Fitzgerald, ITT AES,
Gerald Bright CSC,
John Rooks, AFRL

Key Words: Efficient, Radar, Signal Processor, WSSP, VHDL, DPMI, STAP

ABSTRACT

Power efficiency and ease of programming are key issues
in the implementation of real-time systems in airborne and
space-based applications. This paper describes a radiation
tolerant processor designed for space-based Radar
applications. The proposed system achieves real-time
performance while minimizing power consumption. It is a
fully programmable general purpose processor that can be
used for existing and future Radar signal processing
algorithms as well as other computationally intensive tasks. In
addition to programmability, the processor and I/O design
facilitate scaling to thousands of processors.

The system is based on synthesizable VHDL and can be
Radiation hardened by design or by process technology. This
paper gives an overview of the processor design. Further, it
explains the software environment and tools available for the
programmers. All of the software tools are open source and
many are based on the GNU tools. [1]

In this paper we present the performance of some of the
key routines such as Fast Fourier Transform, and Householder
Q/R factorization used for matrix inversion. Also presented is
a sample Radar application that includes a Joint Domain
Localized (JDL) Space Time Adaptive Processing (STAP)
algorithm.

1. BACKGROUND

This work was based on an existing Air Force Research

Laboratory (AFRL) processor design that exhibited excellent
power efficiency allowing it to be packaged into dense 3-D
multi-chip-modules. [2] The design was referred to as the
Wafer Scale Signal Processor (WSSP). It was only partially
synthesizable and was implemented in 0.5 micron technology.
Currently the design is targeted to 0.18 and 0.13 micron
technology under two different efforts.

The major changes that have taken place include making
the VHDL fully synthesizable, adding a cache, changing the
I/O interfaces from PCI and Myrinet to 10 Gigabit Ethernet,
and emulating the processor on Field Programmable Gate
Arrays (FPGAs).

Original plan, in 0.13 micron technology, called for 16
processors each with one Megabyte of on-chip memory on a
single die with a 10 Gigabit Ethernet switch. However the
funding has been reduced requiring a major descope in the

design. Currently it is planned to demonstrate a smaller
number of processors excluding the on-chip Ethernet crossbar
switch.

2. PROCESSING ELEMENTS

The main objective of this design is to provide the Signal

Processing community with a flexible general purpose floating
point processor that is power efficient and open source. Open
source allows it to be customized as needed and facilitates
system integration and debugging.

The WSSP is a general purpose floating point processor
designed to produce maximum efficiency for vectored
operations which constitute the main building blocks of signal
processing algorithms. The WSSP can perform two single
precision floating point multiplications and two single
precision floating point additions per clock cycle, or two
double precision operations per clock cycle. That produces a
peak performance of 4 FLOPs/clock. Its estimated speed in
0.13 micron technology is 250 MHz, yielding 1.0 GFLOP/sec
as a peak performance per processor. Power consumption is
much more difficult to determine. A rough estimate is
between 2 and 10 GFLOPs/watt.

The processor can be customized to each application or
set of applications. For Radar signal processing, a
configuration that is very effective is to have numerous
processors each with a small (1 or 2 Mbyte) on-chip memory
while one processor in 6 to one in 18 has a larger amount of
external memory.

The processors with their cache and I/O interface are
optionally used in groups of three. This allows voting of
outputs to mitigate single event upsets. The on-chip memory
is protected with an Error Correcting Code (ECC) providing
single bit corrections and multi-bit detection. And the
interface I/O has two Cyclic Redundancy Check (CRC) codes.
The first protects the header information and the second CRC
forms the CRC for the entire packet.

The processors can write directly to each other’s
memories using a special Ethernet direct write packet. The
first CRC provides protection of the header data which
contains the memory address where the remainder of the
packet is to be stored.

The cache memory is fully associative allowing any
memory location to be mapped into any line. With just 16
cache lines, 32 bytes wide, the processor’s most complex

0-7803-8882-8/05/$20.00 (C) 2005 IEEE

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 MAY 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Power Efficient Radar Signal Processor

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ITT AES

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002017. Proceedings of the 2005 IEEE International Radar Conference Record Held in
Arlington, Virginia on May 9-12, 2005. U.S. Government or Federal Purpose Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

instruction (the radix 4 FFT) is able to sustain full speed. This
case assumes a 4 cycle access latency to the on-chip memory.

If a unique signal processing function is required and it
does not map well to the existing set of vector instructions,
new micro-code instructions can be added using the writeable
control store. The assembler has been enhanced to allow
dynamic addition of instructions without the need to
recompile.

Finally, each processor core has an interrupt unit with 7
levels of interrupt requests. The seventh interrupt level is non-
maskable.

3. SOFTWARE DEVELOPMENT SUITE

The processor comes with a complete suite of software

development tools. The software suite consists of C/C++
cross compiler, assembler, linker, simulator, and debugger.
Most of the software tools are derived from standard gnu
tools.

All software tools have standard UNIX man pages that
explain their use and different options for each tool. In
addition to the man pages, there is documentation including a
user manual and operating instructions explaining the use of
the system.

3.1 ISA (Instruction Set Architecture) Simulator

The WSSP simulator is the central piece of software in
the development suite. It simulates the behavior of the WSSP
processing element at the level of the assembly instruction
code. The ISA simulator simulates the behavior of the WSSP
down to the number of clock cycles used by every assembly
instruction.

In addition to the simulation of the WSSP element, the
ISA simulator also simulates the memory attached to the
processing element and the network through which messages
are exchanged between processors and different nodes in the
system.

With the capability of simulating the number of clock
cycles taken by each assembly instruction, the ISA simulator
can accurately profile the performance of the code. The ISA
simulator provides the user with a complete list of
performance measures such as total number of clock cycles,
total number of vector or scalar floating point operations, and
the power consumption taken by the execution of the
simulated program. The power consumption data is for the
existing older generation hardware. The simulator was given
the measured power numbers for each instruction and they are
used to calculate the power for any given program. In
addition, the ISA simulator’s profiler can also be set to report
the percentage of time in each subroutine relative to the total
time of the whole program. It can also be set to report the
number of branch calls, or cache hits/misses to get a good
evaluation of the system performance.

The ISA simulator is also used as an interface to the

hardware. During software development it makes all the
resources of the host system available, providing file access
and display services to the embedded processors. It is also

possible to run a system of simulated processing elements
mixed with actual hardware processors. This enables
localizing the debugging process by replacing the failing
hardware processor with a simulated one and watching the
exact replica of the program running in the simulation
environment where more information is available.

3.2 Debugger with (Data Display Debugger) DDD GUI
Interface

It is important for the developer to be able to monitor and

debug the execution of an algorithm. The WSSP software
suite includes the WSSP debugger, which is derived from the
gnu debugger. The WSSP debugger comes also with the DDD
GUI interface.

With the assistance of the WSSP debugger, the developer
can monitor the status of any program. It provides the ability
to step through the code in a single or multiple step modes.
The debugger can also be accessed remotely through a secure
shell with X-Windows capability. The remote access is done
through communication with sockets. This approach reduces
the response time by running the core software on the remote
access machine, and exchanging only data through the remote
socket.
The remote accessibility is one of the major advantages of the
software development tools of the WSSP environment. Users
can run and debug their applications without having to be
physically on-site. This feature has been used with an FPGA
emulation of the processor, allowing remote programmers to
emulate on multiple processors over the internet.

3.3 Real-time operating system RTEMS

The Army developed Real-Time Executive for

Military/Multi-processor Systems (RTEMS) was chosen as the
operating system for the WSSP. RTEMS is a multi-
processing real-time system with desirable features for real-
time applications. [3] Extra features have been added to
RTEMS in order to meet the requirements of the new
platform. One of the added features is the dynamic message
passing mechanism. The new system is called DMPI
(Dynamic Message Passing Interface). The DMPI is based on
the subscriber/publisher model. When a process publishes a
message, either one or many subscribers can subscribe to
receive that message. This gives more flexibility for
exchanging data between processes. At the same time, new
receivers or transmitters can be spawned based on the
throughput and the dynamic loading of the system.
The operating system environment also allows for dynamic
process re-allocation. The dynamic process re-allocation
feature provides the flexibility to change the number and type
of processes during run time. This allows the user to switch
between different modes of operation. One example is to have
two modes of operations such as GMTI and SAR. During the
mission the user can switch between the two operating modes
in a gradual manner. As processors complete one mode they
are switched over to the next without having to have them all
complete the first mode prior to switching any to the second

0-7803-8882-8/05/$20.00 (C) 2005 IEEE

mode. This prevents dead time in the Radar time-line while
waiting for the processing of one mode to complete.

3.4 FPGA Emulation on HHPC

The processor is available as fully synthesizable VHDL

code. The code has been successfully loaded and tested on a
Heterogeneous High Performance Computer (HHPC)
containing Xilinx VirtixII FPGAs. The HHPC consist of 48
dual Pentium nodes each with an Annapolis WildstarII card.
Each WildstarII card contains two Xilinx Virtex II 6 million
gate FPGAs.

The core of a processor consumes 35% of the area of one
6 million gate Xilinx FPGA. Currently the core has been
tested at 20 MHz. Work is planned to improve the speed on
the FPGA version of the processor to 70 MHz. Currently the
emulation is being used to find any rarely occurring bugs. It
allows a much larger set of tests to be run relative to the
VHDL simulations that run a factor of one million times
slower.

Fixing problems in the emulation stage is faster and less
expensive than doing so after building the ASIC. That is why
the FPGA emulation is an important concept in the design
cycle of the processor.

The FPGA emulation is available on the HHPC in Rome,
NY. US DOD users can remotely access the emulation
through Kerberos secure access. The emulation is also
available for DOD users who want to test or verify software
on the processor.

4. PERFORMANCE OF KEY ROUTINES

The following section summarizes some of the simulated

results that were run using the ISA simulator. Tests have been
run on common functions widely used in Radar signal
processing algorithms such as FFT, Pulse Compression and
QR factorization. In addition JDL STAP was chosen as an
example of an algorithm used in ground moving target
detection applications.

4.1 FFT Performance

The WSSP ISA Simulator was used to capture flop and

clock count performance of single precision complex one
dimensional FFT functions for different size data sets.
Simulation results of both Radix-4 and Radix-2 cases are
shown in the following figures. Figure 1 shows the
flops/clock ratio and the percentage of peak efficiency
recorded for different FFT sizes where 4 flops per clock
equals 100% of peak computation efficiency for the processor.
Figure 2 shows memory requirements and total FLOPs for
different one dimensional FFT sizes.

Radix-4 and Radix-2 FFT Performance

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

10 100 1000 10000 100000

FFT Size

Fl
op

s/
Cl

oc
k

0.00

0.13

0.25

0.38

0.50

0.63

0.75

0.88

1.00

P
ea

k
Ef

fic
ie

nc
y

Radix-4

Radix-2

Figure 1 Flop/Clock Ratio and Efficiencies for various

FFT sizes

Radix-4 and Radix-2 FFT Memory &
FLOP Requirements

0.1

1

10

100

1000

10000

10 100 1000 10000 100000
FFT Size

M
em

or
y

(K
B

yt
es

)

0.001

0.01

0.1

1

10

100

To
ta

l M
FL

O
P

Radix-4

Radix-2

MFLOP

Figure 2 Memory and FLOP requirements for various

FFT sizes

4.2 Pulse Compression Performance

After fully characterizing the FFT library, a pulse

compression test was then run to determine its performance.
The received signal pulse compression was implemented with
a forward FFT, a complex multiply with the reference chirp
signal spectrum and an inverse FFT.

Figure 3 shows the flops/clock ratio and the percentage of
peak efficiency recorded for different compression lengths,
again where 4 flops per clock is the 100% peak computation
efficiency of the processor. The performance for the larger
data sets is approximately 50% of peak. The memory
requirements are only slightly larger than the FFT
requirements to include the reference radar transmit signal
storage.

0-7803-8882-8/05/$20.00 (C) 2005 IEEE

Pulse Compression Performance

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

10 100 1000 10000 100000

Pulse Compression FFT Length

Fl
op

s/
Cl

oc
k

0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1

P
ea

k
 E

ffi
ce

ny

Radix-4

Radix-2

Figure 3 Compression Flop/Clock Ratio and Efficiencies

for different FFT sizes

4.3 QR Factorization Performance

QR Factorization performance is very significant to the

overall system processing requirements. Depending on the
parameters it can account for 80% or more of the total system
signal processing requirement. Here the least squares
estimation replaces the traditional matrix inverse and a sliding
window R matrix block update and QR back solve is applied
as the weight calculations are moved along the range
dimension. With that in mind, the performance of the block
update as shown in Figure 4 was determined. A processing
efficiency of approximately 60% was achieved on a 9 degrees-
of-freedom (DOF) case, or 9 by 9 matrix. The efficiency
improves as the DOF increases.

0

1

2

3

4

1 54 107 160 213 266 319 372

b

FL
O

P
S

 p
er

 C
lo

ck

asm flops/clock

max flops/clock

C flops / clock

Figure 4 QR block update FLOPS/clock for various

lengths.

4.4 JDL Performance

The JDL STAP processing efficiency for a 9 DOF size

was 30% including the additional Q matrix back solve, local
data handling and final weight calculation. Large scale
simulations of the complete processing chain are currently in
progress.

Since the JDL STAP processing has a high FLOP to I/O
ratio numerous processors can be applied to the task with a
relatively minor impact on the overall processing efficiency.

Figure 5 shows a block diagram of the complete
processing chain from pulse compression through Constant
False Alarm Rate (CFAR) detection.

KJ0

N x K x J0

Size: MBytes

Corner Turn

J0 x K x N
Size: MBytes

K
N

J0

Doppler

Doppler

Doppler

KxNxJ0

KxNxJ0

KxNxJ0

KxNxJ0

KxNxJ0

KxNxJ0

K

J0N

K x N x J0

Size: MBytes

JDL/
CFAR

JDL/
CFAR

JDL/
CFAR

KB
KB

CORNER TURN

Range x Pulse Range x Doppler

Detections

Detections

Detections

MFLOPS
MClocks

MFLOPS
MClocks

Range x Doppler
x Beams

Memory Write with strides

MFLOPS
MClocks

Per processor

4

8192256

4

256

8192

4KJ0

N x K x J0

Size: MBytes

Corner Turn

J0 x K x N
Size: MBytes

K
N

J0

Doppler

Doppler

Doppler

KxNxJ0

KxNxJ0

KxNxJ0

KxNxJ0

KxNxJ0

KxNxJ0

K

J0N

K x N x J0

Size: MBytes

JDL/
CFAR

JDL/
CFAR

JDL/
CFAR

KB
KB

CORNER TURN

Range x Pulse Range x Doppler

Detections

Detections

Detections

MFLOPS
MClocks

MFLOPS
MClocks

Range x Doppler
x Beams

Memory Write with strides

MFLOPS
MClocks

Per processor

4

8192256

4

256

8192

4

Figure 5 Block diagram for Joint Domain Localized

Space Time Adaptive Processing.

A typical data flow would start with pulse compression
across numerous processors, followed by saving of the data to
a large DRAM. Next the data is taken out across the pulses as
opposed to in the range direction. In other words the DRAM
is used to corner turn the data by either writing it or reading it
with non-unit stride addresses. There are ways to accelerate
the non-unit stride access so that they do not become a
bottleneck. The pulse ordered data is then Doppler processed
by numerous processors and returned to the DRAM. JDL
STAP processing can then be assigned to a large number of
processors due to its high FLOP to I/O ratio. Generally the
required latency for a given Coherent Processing Interval
(CPI) is large enough to allow numerous CPIs to be processed
in parallel.

5. SUMMARY

Power efficiency and ease of programming are key issues

in the implementation of real-time processors for space-based
applications. This paper reviewed a synthesizable processor
and its development environment as it applies to space-based
Radar applications. The system consists of fully
programmable general purpose processors that can be used

0-7803-8882-8/05/$20.00 (C) 2005 IEEE

with existing and future Radar signal processing algorithms as
well as for other computationally intensive tasks. The I/O and
support software allow thousands of the processors to be used
together in a high performance computer.

In addition to the synthesizable hardware a complete suite

of integrated development software tools is available,
including a compiler, assembler, debugger, simulator,
emulator, real-time multi-processing operating system, math
libraries, and message passing routines. All of the software
tools are open source and many are based on the GNU tools.

This paper presented the performance of some of the key
routines such as Fast Fourier Transforms, and Q/R Household

factorization used for matrix inversion. Benchmark
performance data was presented for Joint Domain Localized
Space Time Adaptive Processing (JDL STAP).

6. REFERENCES

1. GNU web site www.gnu.org
2. J. Rooks, J. Lyke, R. Linderman, “Wafer Scale Signal

Processors and Reconfigurable Processors in a 3-Dimensional
Package”, GOMAC 2002 Digest of Papers, Volume XXVII,
March, 2002

3. RTEMS web site www.rtems.com

0-7803-8882-8/05/$20.00 (C) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

	Select a link below
	Return to Main Menu
	Return to Previous View

